Posted on

Looking at the data

the complete schematic is here:

Schematic for RFID1 simulation

 

Input and output for RFID1. It may be desirable to increase the DC offset or the amplitude of the output
But i’m going to go with this signal to start and work on refining the output after I breadboard the design.

So there are a few ways to increase the strength of the output signal while still maintaining the necessary modulation of the RFID card. I added a small load on the output. This did reduce the over all time the signal was ‘high’ but it would likely not matter much to the micro-controller.  I increased and decreased the overall inductance and changed the ratios of a few resistors but mostly it led to an instability in the overall output of the signal.  Coilcraft has a few nice 125 kHz RFID inductors on their site that I’m going to add to the BOM and the board layout.

My next step is to work on doing the PCB layout, routing, stack-up, geometry ect and get the board made. Then I’m going to build up and test a breadboard while I wait for the real parts to get in. I’m not going to buy a micro controller yet…I have an arduino device in mind but I’ll post another section on this hardware.

 

Posted on

Compiling the netlist

My simulation is complete! Woot!!! A couple key leanings.  This was the first time in a long time I’ve worked with a netlist and I’ve never had to import subcircuts or models. gnetlist is an OK tool but it definitely does not support subcircuits very well or maybe there are some flags I did not enable for it to compile out of the schematic…  So what I did is I used the call:

gnetlist -g spice-sdb -o RFID1.net RFID1.sch

This is documented in the gnetlist wiki so what it got me is as follows:
*******************************
* Begin .SUBCKT model         *
* spice-sdb ver 4.28.2007     *
*******************************
.SUBCKT LM358
*vvvvvvvv  Included SPICE model from ./models/bs170.mod vvvvvvvv
*ZETEX  BS170 Mosfet Spice Subcircuit   Last revision  12/85
*
.SUBCKT BS170 3 4 5
*             D G S
M1 3 2 5 5 N3306M
RG 4 2 270
RL 3 5 1.2E8
D1 5 3 N3306D
.MODEL N3306M NMOS VTO=1.824 RS=1.572 RD=1.436 IS=1E-15 KP=.1233
+CGSO=28E-12 CGDO=3E-12 CBD=35E-12 PB=1
.MODEL N3306D D IS=5E-12 RS=.768
.ENDS BS170
*
*                          (C)  1991 ZETEX PLC
*
*   The copyright in this model  and  the design embodied belong to
*   Zetex PLC (“Zetex”). It is supplied free of charge by Zetex for
*   the purpose  of research  and design  and may be used or copied
*   intact (including this notice) for that purpose only. All other
*   rights  are  reserved.  The model  is believed  accurate but no
*   condition or warranty as to its  merchantability or fitness for
*   purpose  is  given  and  no liability  in respect of any use is
*   accepted by Zetex PLC, its distributors or agent.
*
*
*   Zetex PLC, Fields New Road, Chadderton, Oldham  OL9 8NP
*^^^^^^^^  End of included SPICE model from ./models/bs170.mod ^^^^^^^^
*
*vvvvvvvv  Included SPICE model from ./models/bc547.mod vvvvvvvv
.MODEL BC547 NPN ( IS =1.8E-14 ISE=5.0E-14 NF =.9955 NE =1.46 BF =400
+BR =35.5 IKF=.14 IKR=.03 ISC=1.72E-13 NC =1.27 NR =1.005 RB =.56 RE =.6
+RC =.25 VAF=80 VAR=12.5 CJE=13E-12 TF =.64E-9 CJC=4E-12 TR =50.72E-9
+VJC=.54 MJC=.33 )
*^^^^^^^^  End of included SPICE model from ./models/bc547.mod ^^^^^^^^
*
*vvvvvvvv  Included SPICE model from ./models/LM358.mod vvvvvvvv
*//////////////////////////////////////////////////////////////////////
* (C) National Semiconductor, Inc.
* Models developed and under copyright by:
* National Semiconductor, Inc.

*/////////////////////////////////////////////////////////////////////
* Legal Notice: This material is intended for free software support.
* The file may be copied, and distributed; however, reselling the
*  material is illegal

*////////////////////////////////////////////////////////////////////
* For ordering or technical information on these models, contact:
* National Semiconductor’s Customer Response Center
*                 7:00 A.M.–7:00 P.M.  U.S. Central Time
*                                (800) 272-9959
* For Applications support, contact the Internet address:
*  amps-apps@galaxy.nsc.com

*//////////////////////////////////////////////////////////
*LM358 DUAL OPERATIONAL AMPLIFIER MACRO-MODEL
*//////////////////////////////////////////////////////////
*
* connections:      non-inverting input
*                   |   inverting input
*                   |   |   positive power supply
*                   |   |   |   negative power supply
*                   |   |   |   |   output
*                   |   |   |   |   |
*                   |   |   |   |   |
.SUBCKT LM358       1   2  99  50  28
*
*Features:
*Eliminates need for dual supplies
*Large DC voltage gain =             100dB
*High bandwidth =                     1MHz
*Low input offset voltage =            2mV
*Wide supply range =       +-1.5V to +-16V
*
*NOTE: Model is for single device only and simulated
*      supply current is 1/2 of total device current.
*      Output crossover distortion with dual supplies
*      is not modeled.
*
****************INPUT STAGE**************
*
IOS 2 1 5N
*^Input offset current
R1 1 3 500K
R2 3 2 500K
I1 99 4 100U
R3 5 50 517
R4 6 50 517
Q1 5 2 4 QX
Q2 6 7 4 QX
*Fp2=1.2 MHz
C4 5 6 128.27P
*
***********COMMON MODE EFFECT***********
*
I2 99 50 75U
*^Quiescent supply current
EOS 7 1 POLY(1) 16 49 2E-3 1
*Input offset voltage.^
R8 99 49 60K
R9 49 50 60K
*
*********OUTPUT VOLTAGE LIMITING********
V2 99 8 1.63
D1 9 8 DX
D2 10 9 DX
V3 10 50 .635
*
**************SECOND STAGE**************
*
EH 99 98 99 49 1
G1 98 9 POLY(1) 5 6 0 9.8772E-4 0 .3459
*Fp1=7.86 Hz
R5 98 9 101.2433MEG
C3 98 9 200P
*
***************POLE STAGE***************
*
*Fp=2 MHz
G3 98 15 9 49 1E-6
R12 98 15 1MEG
C5 98 15 7.9577E-14
*
*********COMMON-MODE ZERO STAGE*********
*
*Fpcm=10 KHz
G4 98 16 3 49 5.6234E-8            
L2 98 17 15.9M
R13 17 16 1K
*
**************OUTPUT STAGE**************
*
F6 50 99 POLY(1) V6 300U 1
E1 99 23 99 15 1
R16 24 23 17.5
D5 26 24 DX
V6 26 22 .63V
R17 23 25 17.5
D6 25 27 DX
V7 22 27 .63V
V5 22 21 0.27V
D4 21 15 DX
V4 20 22 0.27V
D3 15 20 DX
L3 22 28 500P
RL3 22 28 100K
*
***************MODELS USED**************
*
.MODEL DX D(IS=1E-15)
.MODEL QX PNP(BF=1.111E3)
*
.ENDS
*$
*^^^^^^^^  End of included SPICE model from ./models/LM358.mod ^^^^^^^^
*
*==============  Begin SPICE netlist of main design ============
R12 0 8 50
R11 0 5 50
Vin 1 0 pulse 0 3.3 125kHz
Q2 0 7 6 BC547
XU2 8 12 6 0 +5V LM358
XU1 5 12 4 0 +5V LM358
Q1 0 2 9 BS170
D1 10 11 1N4148
R10 0 12 1k
R9 12 +5V 4k
L1 10 9 10NH
R5 0 11 270k
C1 11 3 12NF
C3 0 11 4NF
C2 0 10 1NF
R1 9 +5V 100
R7 6 8 100k
R6 7 5 1k
R8 6 +5V 33k
R3 4 5 390k
R4 4 3 33k
R2 2 1 1K
.ends LM358
*******************************

This is impossible to parse for kjwaves so I had to trim it to this version:

*==============  Begin SPICE netlist of main design ============
*form   PULSE(V1 V2 TD TR TF PW PER)

Vin 1 0 PULSE(0  5V 0  8ns  8ns  0.004ms 0.008ms) dc=0
Q2 0 7 6 BC547
XU2 8 12 6 0 +5V LM358
XU1 5 12 4 0 +5V LM358
XQ1 0 2 9 BS170
XD1 10 11 1N4148
R10 0 12 1k
R9 12 +5V 4k
L1 10 9 0.37MH
R5 0 11 270k
C1 11 3 12NF
C3 0 11 4NF
C2 0 10 1NF
R1 9 +5V 100
R7 6 8 100k
R6 7 5 1k
R8 6 +5V 33k
R3 4 5 390k
R4 4 3 33k
R2 2 1 1K

.MODEL BC547 NPN ( IS =1.8E-14 ISE=5.0E-14 NF =.9955 NE =1.46 BF =400
+BR =35.5 IKF=.14 IKR=.03 ISC=1.72E-13 NC =1.27 NR =1.005 RB =.56 RE =.6
+RC =.25 VAF=80 VAR=12.5 CJE=13E-12 TF =.64E-9 CJC=4E-12 TR =50.72E-9
+VJC=.54 MJC=.33 )

.include /home/shane/Documents/Design/models/bs170.mod
.include /home/shane/Documents/Design/models/LM358.mod
.include /home/shane/Documents/Design/models/1N4148.prm
.opt acct list node
.tran 8ns .08ms
.end

Notice the ‘X’ next to the component calls. This indicates the subcircuit model identified by the .include line. 🙂 

This loaded and ran in kjwaves and gave what I believe are reasonable results. They are definitely NOT what the author describes should be the result but I think that it is something a micro-controller can read in and change to a cmos logic signal.